
 

 

  
Abstract—Vision-based intelligent vehicle applications often 

require large amounts of memory to handle video streaming and image 
processing, which in turn increases complexity of hardware and 
software. This paper presents an FPGA implement of a vision-based 
blind spot warning system. Using video frames, the information of the 
blind spot area turns into one-dimensional information. Analysis of the 
estimated entropy of image allows the detection of an object in time. 
This idea has been implemented in the XtremeDSP video starter kit. 
The blind spot warning system uses only 13% of its logic resources 
and 95k bits block memory, and its frame rate is over 30 frames per sec 
(fps). 
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I. INTRODUCTION 
HE BLIND spots of a vehicle are the areas of the road that 
are not visible while looking through either the rear-view 

or the side-view mirrors. Many accidents have occurred with 
cars in blind spots in situations of passing or changing lanes. 
For example, a driver who is going to change lanes looks in the 
side mirror to confirm that the lane is free, but a car suddenly 
comes from behind, just when the driver is about to change 
lanes. If the driver ignores the blind spots, this critical situation 
often results in an accident. The “Blind Spot Detection System” 
helps prevent this possibility by gathering blind spot 
information. Past systems have often widened the range of side 
mirrors or installed two cameras on both sides of a vehicle to 
gather blind spot information. With these systems, drivers must 
still concentrate on the road and decide when lane changing is 
safe. The “Blind Spot Warning System” is an intelligent vehicle 
application designed to prevent distraction-related accidents. 
When the driver wants to change lanes, the system will warn 
the driver if changing lanes is not safe, now. 
 The blind spot warning system uses special technologies to 
estimate the distance of an approaching vehicle. One of the 
available tools is the ultrasonic radar, which detects distance 
using ultrasonic distance detection technology. Uvais Qidwai 
used a low-cost ultrasonic sensor and Fuzzy Inference System 
as the main decision logic forces of the blind spot warning 
system [1]. Radars, however, usually have blind spots and a 
smaller view. The range of blind spots correlates with the 
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number of the installed radars. It is difficult for radars to detect 
an object moving in a large area because of its limited detection 
distance. In contrast, the vision-based blind spot warning 
system can overcome the problem of blind spots. Vision-based 
blind spot warning systems use CCD (Charge Coupled Device) 
cameras or CMOS (Complementary Metal Oxide 
Semiconductor) cameras that are installed on both sides of a 
vehicle to capture images of the blind spot areas. There are 
several technologies and methods for implementing 
vision-based blind spot warning systems, including motion 
information [2][3][4], using color and edge [5][6], optical flow 
[7], AdTM [8] and converting images into one dimensional 
information [9]. 
 Y. K. Wang [2] and Y. Zhu[3] used the robust method to 
achieve reliable detection of overtaking vehicles. Using the 
robust method, one can obtain reliable motion estimations 
against a variety of image noise. Axel Techmer used motion 
estimation and contour extraction to detect and track objects [4]. 
Luo-Wei Tsai used the edges and color of static images to 
detect vehicles. In contrast with traditional methods, they found 
the color of vehicle using the color transform method [5]. Kai 
She proposed a real-time on-road vehicle tracking method. The 
method builds a static model for the target with color and shape 
[6]. Parag H. Batavia proposed an optical flow based on an 
obstacle detection system [7]. M. Krips used AdTM to detect 
the overtaking object [8]. C.T Chen proposed a method for 
converting the information of a blind-spot area into 1-D 
information [9]. 
 Vision-based solutions often require large amounts of 
memory to handle video data streams and image processing, 
which increases the hardware and software complexity of these 
solutions. However, DSP (Digital Signal Processor) cannot 
implement some of these functions. Besides, using DSP 
increases greatly the system cost. Therefore, these systems use 
FPGA(Field Programmable Gate Array) instead of DSP. In 
general, a FPGA offers more functionality and costs less than a 
DSP design [10]. 
 The approach of this paper is extension of research by C.T. 
Chen [9], and is organized as follows. Section II introduces the 
basic proceeding step. Section III discusses the FPGA 
architecture. Section IV covers the experimental and 
implementation results. 
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II. ALGORITHM OF APPROACHING VEHICLE 
DETECTION 

The approaching vehicle detection algorithm this study 
proposes is based on the image entropy estimation method. 
Figure 1 shows all the steps in the algorithm.  
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Figure 1. Algorithmic process of approaching vehicle 

detection 
 
The first step is defining the region of interest. Next, the 2-D 

image is converted to 1-D distance-axis signal information. 
Equation (1) yields an estimation of the 1-D distance-axis 
signal information:  

.

)log()(
1

∑
=

×−=
n

i
PiPixI                                    (1) 

pixelsT
GiPi =  

wherein Gi is the number of Gray level i appearing in the 
interested region of image, Tpixels is the number of effective 
pixels in the interested region of image, Pi is the probability that 
Gray level i appears in the interested region, n is the Gray level 
in the interested region, and x is the beginning position of the 
1-D distance-axis in the interested region. 

Next, Eq. (2) estimated the differential value of the 1-D 
distance-axis signal information at a single time point:  
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The value of increment a will be set at about 10 for a camera 
with a resolution of 320x240. For cameras with a resolution of 
640x480, the value of a will be set at about 15-20. The higher a 
camera’s resolution is, the larger the increment a may be. The 
position of the approaching object is determined according to 
whether the differential is greater than or equal to a threshold. 
The approaching status is determined according to whether the 
difference is greater than or equal to a threshold. 

To detect the movement of an object, It(X) and It+1(Xt+1) are 
subtracted to attain the difference (∆It+1(X)) according to Eq. 
(3): 
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When an object moves to Position Xt+1, ∆It+1(X) is the 
maximum value. The differential value of It+1’(Xt+1) and 
∆It+1(Xt+1) have obvious peaks at Position Xt+1 where the 
object appears. Therefore, one can determine if an object is 
approaching by comparing the value of It+1’(Xt+1) and ∆It+1(X) 
with a threshold value or not. In the final step, when the values 
of It+1’(Xt+1) and ∆It+1(X) are greater than or equal to the alert 
limit set by the user, the user is alerted by a LED, a buzz, or a 
speaker. 

III. FPGA IMPLEMENT OF APPROACHING VEHICLE 
DETECTION ALGORITHM 

Figure 2 shows a block diagram of the proposed approaching 
vehicle detection algorithm, which consists of five main parts: a 
memory controller, a Gray level histogram calculation unit, a 
log calculation unit, an entropy calculation unit, and an 
approaching warning unit. First, the pixel data of interested 
region is written in the block memory. These pixel data are read 
from memory when the camera puts out pixel data that is not in 
the interested region. The Gray level histogram calculation unit 
then calculates the Gray level histogram of the interested region. 
Next, the Gray level histogram value is converted to a log value 
with a log calculation unit. After calculating the log value, the 
entropy calculation unit is used to calculate entropy (It(X)). 
Then approaching warning unit calculates the differential value 
of the 1-D signal (It+1’(Xt+1)) and the difference of 1-D signals 
of at least two adjacent time points (∆It+1(X)). When the 
It+1’(Xt+1) and the ∆It+1(X) are greater than or equal to the alert 
limit, the approaching warning unit alerts the user. 

 
 



 

 

 
Figure 2. Block diagram of proposed approaching vehicle 

detection algorithm 
 

A. Memory Controller 
The pixel data of camera is output by row, but column data 

are needed for the image process. As Fig. 3 shows, if pixel data 
is written in memory by row and read from memory by column, 
the pixel data is transposed from row to column. 

 

 
 
Figure 3. Transposition of pixel data from rows to columns 
 
 However, storing whole frames greatly increases the 

amount of memory required. To reduce the amount of memory 
required, the storage unit only retains the data from the 
interested region. When the camera outputs the pixel data from 
the interested region, the memory controller turns the memory 
status from “reading” to “writing.” Otherwise, the memory 
controller maintains the “reading” status.  

B. Gray level histogram calculation unit 
The Gray level histogram calculation unit calculates the 

Gray level appearing in the interested region of an image. First, 
it divides a frame into several blocks. Each block includes five 
sub-blocks. A sub-block includes one column pixel data from 
the interested region. As Eq. (4) shows: 
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 wherein H is the block histogram value of Gray level 
appearing in the image’s interested region, S is the sub-block 
histogram value of Gray level appearing in the interested region 
of the image, x is the position of first block. Equation (5) 
reveals that:  
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To calculate Hx+1, Sx+5 must replace Sx; that is, only five 

registers per level are necessary to restore the histogram data. 
Figure 4 shows the architecture of the gray level histogram 
calculation unit. 
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Figure 4. The architecture of the Gray 

level histogram calculation unit 
 

C. Log calculation unit 
The log calculation unit converts the Gray level into a log 

value for entropy calculation. The log calculation unit is the 
computational bottleneck of the approaching vehicle detection 
algorithm. To implement log calculation in FPGA, one 
simplifies the complex calculation using the Taylor series. As 
Eq. (6) shows: 
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Gi is number of Gray level i, m is how many bits the value 

shifts, x is the decimal of the normalized value, ln(x+1) is the 
natural log of x+1, n is the order of the Taylor series. The log 
calculation unit in FPGA can be implemented from Eq.(6). 
Figure 5 shows the architecture of the log calculation unit.  
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Figure 5. The architecture of log calculation unit 

 
First, the level histogram value is normalized using shifters. 

Next, the binary number without the highest bit is taken out to 
calculate the second and third orders of ln(x+1) with a 
multiplier. The value of ln(x+1) can be estimated by adders and 
subtractors. Then log(Gi) can be estimated according Eq. (7): 
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From Eq. (1), -log(pi) can be defined by Equation(8): 
 

)log()log()log( GiTPi pixels −=−                                    (8) 

D. Entropy calculation unit 
    Figure 6 shows the architecture of the entropy calculation 
unit.  
 

 
 

Figure 6. The architecture of the entropy calculation unit 
 
 An entropy calculation unit includes two parts: a level 
entropy calculation unit and a block entropy calculation unit. 
The level entropy calculation unit takes the –log(pi), which is 
estimated with the log calculation unit to calculate –log(pi) × pi 
by the multiplier. Then, the block entropy calculation unit adds 
all level entropies and estimates the differential value of block 
entropies and the difference. Only adders, shifters, and 
subtractors can be used to implement Eq. (1), which is 
simplified by the Taylor series.  
 

E. Approaching warning unit 
 After estimating the entropy, differential value, and 
difference, these three values can be used to determine if an 
object is approaching. If an object is approaching, the entropy 
and differential value will increase (Fig. 7). If the entropy and 
differential value exceed the threshold set by the user, the 
approaching warning unit alerts the user with a display, LED, a 
buzzer, or a speaker. 
 

 
 

Figure 7. Behavior description chart of  
approaching vehicle detection 

 

IV. IMPLEMENT RESULTS AND EXPERIMENTAL 
RESULTS 

A. Implement results 
 The goal of this study is to implement a low cost blind spot 
warning system in FPGA. The system has been successfully 
implemented and tested on the Xilinx XtremeDSP video starter 

kit. Table 1 shows the utilization of the device, and Table 2 
shows the utilization of the block memory. 
 
 
 

Table 1 Device Resource Utilization (XC3SD3400A) 
Logic 

Utilization 
Used Available Utilization 

Number of 
slice  

flip flop 
3,190 47,744 6% 

Number of 
4 input 
LUTs 

5,937 47,744 12% 

Number of 
occupied 

slices 
3,687 23,872 15% 

Number of 
slices 

containing 
only related

logic 

3,687 3,687 100% 

Total 
number of 

4 input 
LUTs 

6,235 47,744 13% 

                                                
Table 2 Block Memory Utilization of System 

Unit Used 
Memory Controller 85k bits 

Entropy Calculation Unit 5k bits 
On-Screen Display 5k bits 

Total  95k bits 
 
 The blind spot warning system only uses 13% of its logic 
resources and 95k bits of its block memory. 

B.  Experimental  results 
 Testing and verification of the blind spot warning system 
utilized a video database of blind-spot areas. This study’s 
experimental environment was based on the Xilinx XtremeDSP 
video starter kit. The verifiable video was stored in a portable 
video recorder and played in the form of NTSC and input to 
the FPGA. When the system does not alert, the monitor 
displays a green block; when the system alerts, the monitor 
displays a red block (Fig. 8).  
 

 
 



 

 

Figure 8. Analytic result of the blind spot warning system 
 
 The video included three situations (sunny day, bright night, 
rainy day). The sunny day condition is the best and the rainy 
day condition is the worst. The frame rate is over 30 frames per 
second (fps) in day and night. 

V. CONCULSION 
 FPGA offers faster processing speed and costs less than 
traditional DSPs and microcontrollers (MCUs). This research 
proposes a FPGA architecture and implementation for 
blind-spot warning systems. The system uses only 13% logic 
resources and 95k bits of the FPGA’s block memory, and its 
frame rate is over 30 frames per sec. Future blind-spot warning 
systems may incorporate application-specific integrated 
circuits to reduce costs. 
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