

Abstract—Vision-based intelligent vehicle applications often

require large amounts of memory to handle video streaming and image
processing, which in turn increases complexity of hardware and
software. This paper presents an FPGA implement of a vision-based
blind spot warning system. Using video frames, the information of the
blind spot area turns into one-dimensional information. Analysis of the
estimated entropy of image allows the detection of an object in time.
This idea has been implemented in the XtremeDSP video starter kit.
The blind spot warning system uses only 13% of its logic resources
and 95k bits block memory, and its frame rate is over 30 frames per sec
(fps).

Keywords—blind-spot area; image; FPGA

I. INTRODUCTION
HE BLIND spots of a vehicle are the areas of the road that
are not visible while looking through either the rear-view

or the side-view mirrors. Many accidents have occurred with
cars in blind spots in situations of passing or changing lanes.
For example, a driver who is going to change lanes looks in the
side mirror to confirm that the lane is free, but a car suddenly
comes from behind, just when the driver is about to change
lanes. If the driver ignores the blind spots, this critical situation
often results in an accident. The “Blind Spot Detection System”
helps prevent this possibility by gathering blind spot
information. Past systems have often widened the range of side
mirrors or installed two cameras on both sides of a vehicle to
gather blind spot information. With these systems, drivers must
still concentrate on the road and decide when lane changing is
safe. The “Blind Spot Warning System” is an intelligent vehicle
application designed to prevent distraction-related accidents.
When the driver wants to change lanes, the system will warn
the driver if changing lanes is not safe, now.
 The blind spot warning system uses special technologies to
estimate the distance of an approaching vehicle. One of the
available tools is the ultrasonic radar, which detects distance
using ultrasonic distance detection technology. Uvais Qidwai
used a low-cost ultrasonic sensor and Fuzzy Inference System
as the main decision logic forces of the blind spot warning
system [1]. Radars, however, usually have blind spots and a
smaller view. The range of blind spots correlates with the

Yu Ren Lin is with the R&D Division, Automotive Research and Testing

Center, Lugang, Changhua County, Taiwan(R.O.C) (phone:886-4-7811222;
fax:886-4-781-2336; e-mail:ericlin@artc.org.tw)

Yu Hong Li is with the R&D Division, Automotive Research and Testing
Center, Lugang, Changhua County, Taiwan(R.O.C) (e-mail:yhli@artc.org.tw)

number of the installed radars. It is difficult for radars to detect
an object moving in a large area because of its limited detection
distance. In contrast, the vision-based blind spot warning
system can overcome the problem of blind spots. Vision-based
blind spot warning systems use CCD (Charge Coupled Device)
cameras or CMOS (Complementary Metal Oxide
Semiconductor) cameras that are installed on both sides of a
vehicle to capture images of the blind spot areas. There are
several technologies and methods for implementing
vision-based blind spot warning systems, including motion
information [2][3][4], using color and edge [5][6], optical flow
[7], AdTM [8] and converting images into one dimensional
information [9].
 Y. K. Wang [2] and Y. Zhu[3] used the robust method to
achieve reliable detection of overtaking vehicles. Using the
robust method, one can obtain reliable motion estimations
against a variety of image noise. Axel Techmer used motion
estimation and contour extraction to detect and track objects [4].
Luo-Wei Tsai used the edges and color of static images to
detect vehicles. In contrast with traditional methods, they found
the color of vehicle using the color transform method [5]. Kai
She proposed a real-time on-road vehicle tracking method. The
method builds a static model for the target with color and shape
[6]. Parag H. Batavia proposed an optical flow based on an
obstacle detection system [7]. M. Krips used AdTM to detect
the overtaking object [8]. C.T Chen proposed a method for
converting the information of a blind-spot area into 1-D
information [9].
 Vision-based solutions often require large amounts of
memory to handle video data streams and image processing,
which increases the hardware and software complexity of these
solutions. However, DSP (Digital Signal Processor) cannot
implement some of these functions. Besides, using DSP
increases greatly the system cost. Therefore, these systems use
FPGA(Field Programmable Gate Array) instead of DSP. In
general, a FPGA offers more functionality and costs less than a
DSP design [10].
 The approach of this paper is extension of research by C.T.
Chen [9], and is organized as follows. Section II introduces the
basic proceeding step. Section III discusses the FPGA
architecture. Section IV covers the experimental and
implementation results.

FPGA Implementation of a Vision-Based
Blind Spot Warning System

Yu Ren Lin and Yu Hong Li

T

II. ALGORITHM OF APPROACHING VEHICLE
DETECTION

The approaching vehicle detection algorithm this study
proposes is based on the image entropy estimation method.
Figure 1 shows all the steps in the algorithm.

Define detected regions

and
capture pixel data

Estimate 1-D distance-axis
signal information

Estimate the differential value of
1-D distance-axis
signal information

Determine the position of a
object

Determine the approaching
status of a object

Alerting the user

Figure 1. Algorithmic process of approaching vehicle

detection

The first step is defining the region of interest. Next, the 2-D

image is converted to 1-D distance-axis signal information.
Equation (1) yields an estimation of the 1-D distance-axis
signal information:

.

)log()(
1

∑
=

×−=
n

i
PiPixI (1)

pixelsT
GiPi =

wherein Gi is the number of Gray level i appearing in the
interested region of image, Tpixels is the number of effective
pixels in the interested region of image, Pi is the probability that
Gray level i appears in the interested region, n is the Gray level
in the interested region, and x is the beginning position of the
1-D distance-axis in the interested region.

Next, Eq. (2) estimated the differential value of the 1-D
distance-axis signal information at a single time point:

a
axIxIxI)()()(' −−

= (2)

The value of increment a will be set at about 10 for a camera
with a resolution of 320x240. For cameras with a resolution of
640x480, the value of a will be set at about 15-20. The higher a
camera’s resolution is, the larger the increment a may be. The
position of the approaching object is determined according to
whether the differential is greater than or equal to a threshold.
The approaching status is determined according to whether the
difference is greater than or equal to a threshold.

To detect the movement of an object, It(X) and It+1(Xt+1) are
subtracted to attain the difference (∆It+1(X)) according to Eq.
(3):

)()()(11 xIxIxI ttt −=Δ ++ (3)

When an object moves to Position Xt+1, ∆It+1(X) is the
maximum value. The differential value of It+1’(Xt+1) and
∆It+1(Xt+1) have obvious peaks at Position Xt+1 where the
object appears. Therefore, one can determine if an object is
approaching by comparing the value of It+1’(Xt+1) and ∆It+1(X)
with a threshold value or not. In the final step, when the values
of It+1’(Xt+1) and ∆It+1(X) are greater than or equal to the alert
limit set by the user, the user is alerted by a LED, a buzz, or a
speaker.

III. FPGA IMPLEMENT OF APPROACHING VEHICLE
DETECTION ALGORITHM

Figure 2 shows a block diagram of the proposed approaching
vehicle detection algorithm, which consists of five main parts: a
memory controller, a Gray level histogram calculation unit, a
log calculation unit, an entropy calculation unit, and an
approaching warning unit. First, the pixel data of interested
region is written in the block memory. These pixel data are read
from memory when the camera puts out pixel data that is not in
the interested region. The Gray level histogram calculation unit
then calculates the Gray level histogram of the interested region.
Next, the Gray level histogram value is converted to a log value
with a log calculation unit. After calculating the log value, the
entropy calculation unit is used to calculate entropy (It(X)).
Then approaching warning unit calculates the differential value
of the 1-D signal (It+1’(Xt+1)) and the difference of 1-D signals
of at least two adjacent time points (∆It+1(X)). When the
It+1’(Xt+1) and the ∆It+1(X) are greater than or equal to the alert
limit, the approaching warning unit alerts the user.

Figure 2. Block diagram of proposed approaching vehicle

detection algorithm

A. Memory Controller
The pixel data of camera is output by row, but column data

are needed for the image process. As Fig. 3 shows, if pixel data
is written in memory by row and read from memory by column,
the pixel data is transposed from row to column.

Figure 3. Transposition of pixel data from rows to columns

 However, storing whole frames greatly increases the

amount of memory required. To reduce the amount of memory
required, the storage unit only retains the data from the
interested region. When the camera outputs the pixel data from
the interested region, the memory controller turns the memory
status from “reading” to “writing.” Otherwise, the memory
controller maintains the “reading” status.

B. Gray level histogram calculation unit
The Gray level histogram calculation unit calculates the

Gray level appearing in the interested region of an image. First,
it divides a frame into several blocks. Each block includes five
sub-blocks. A sub-block includes one column pixel data from
the interested region. As Eq. (4) shows:

4321 ++++ ++++= xxxxxx SSSSSH (4)

 wherein H is the block histogram value of Gray level
appearing in the image’s interested region, S is the sub-block
histogram value of Gray level appearing in the interested region
of the image, x is the position of first block. Equation (5)
reveals that:

4321 ++++ ++++= xxxxxx SSSSSH (5)

543211 ++++++ ++++= xxxxxx SSSSSH
654322 ++++++ ++++= xxxxxx SSSSSH

To calculate Hx+1, Sx+5 must replace Sx; that is, only five

registers per level are necessary to restore the histogram data.
Figure 4 shows the architecture of the gray level histogram
calculation unit.

Sub-Block
Histogram
Register

Sub-Block
Histogram
Register

Sub-Block
Histogram
Register

+

+

+

Sub-Block
Histogram
Register

Sub-Block
Histogram
Register

+

Level
MUX

Sub-Block
MUX

+

Level
Histogram
Register

1

Pixel Data

Block
Histogram

Figure 4. The architecture of the Gray

level histogram calculation unit

C. Log calculation unit
The log calculation unit converts the Gray level into a log

value for entropy calculation. The log calculation unit is the
computational bottleneck of the approaching vehicle detection
algorithm. To implement log calculation in FPGA, one
simplifies the complex calculation using the Taylor series. As
Eq. (6) shows:

∑
∞ +−=+=
1

1)1()1ln()ln(xn
n
n

xGi (6)

1
2

−= m

Gix

Gi is number of Gray level i, m is how many bits the value

shifts, x is the decimal of the normalized value, ln(x+1) is the
natural log of x+1, n is the order of the Taylor series. The log
calculation unit in FPGA can be implemented from Eq.(6).
Figure 5 shows the architecture of the log calculation unit.

2x

3x

Shifter
Shifter

Shifter

2

2x

3

3x

+

+

Histogram Data

Figure 5. The architecture of log calculation unit

First, the level histogram value is normalized using shifters.

Next, the binary number without the highest bit is taken out to
calculate the second and third orders of ln(x+1) with a
multiplier. The value of ln(x+1) can be estimated by adders and
subtractors. Then log(Gi) can be estimated according Eq. (7):

)2ln()
2

ln()ln(m
m

GiGi += (7)

10ln
)ln()log(GiGi =

From Eq. (1), -log(pi) can be defined by Equation(8):

)log()log()log(GiTPi pixels −=− (8)

D. Entropy calculation unit
 Figure 6 shows the architecture of the entropy calculation
unit.

Figure 6. The architecture of the entropy calculation unit

 An entropy calculation unit includes two parts: a level
entropy calculation unit and a block entropy calculation unit.
The level entropy calculation unit takes the –log(pi), which is
estimated with the log calculation unit to calculate –log(pi) × pi
by the multiplier. Then, the block entropy calculation unit adds
all level entropies and estimates the differential value of block
entropies and the difference. Only adders, shifters, and
subtractors can be used to implement Eq. (1), which is
simplified by the Taylor series.

E. Approaching warning unit
 After estimating the entropy, differential value, and
difference, these three values can be used to determine if an
object is approaching. If an object is approaching, the entropy
and differential value will increase (Fig. 7). If the entropy and
differential value exceed the threshold set by the user, the
approaching warning unit alerts the user with a display, LED, a
buzzer, or a speaker.

Figure 7. Behavior description chart of
approaching vehicle detection

IV. IMPLEMENT RESULTS AND EXPERIMENTAL
RESULTS

A. Implement results
 The goal of this study is to implement a low cost blind spot
warning system in FPGA. The system has been successfully
implemented and tested on the Xilinx XtremeDSP video starter

kit. Table 1 shows the utilization of the device, and Table 2
shows the utilization of the block memory.

Table 1 Device Resource Utilization (XC3SD3400A)
Logic

Utilization
Used Available Utilization

Number of
slice

flip flop
3,190 47,744 6%

Number of
4 input
LUTs

5,937 47,744 12%

Number of
occupied

slices
3,687 23,872 15%

Number of
slices

containing
only related

logic

3,687 3,687 100%

Total
number of

4 input
LUTs

6,235 47,744 13%

Table 2 Block Memory Utilization of System

Unit Used
Memory Controller 85k bits

Entropy Calculation Unit 5k bits
On-Screen Display 5k bits

Total 95k bits

 The blind spot warning system only uses 13% of its logic
resources and 95k bits of its block memory.

B. Experimental results
 Testing and verification of the blind spot warning system
utilized a video database of blind-spot areas. This study’s
experimental environment was based on the Xilinx XtremeDSP
video starter kit. The verifiable video was stored in a portable
video recorder and played in the form of NTSC and input to
the FPGA. When the system does not alert, the monitor
displays a green block; when the system alerts, the monitor
displays a red block (Fig. 8).

Figure 8. Analytic result of the blind spot warning system

 The video included three situations (sunny day, bright night,
rainy day). The sunny day condition is the best and the rainy
day condition is the worst. The frame rate is over 30 frames per
second (fps) in day and night.

V. CONCULSION
 FPGA offers faster processing speed and costs less than
traditional DSPs and microcontrollers (MCUs). This research
proposes a FPGA architecture and implementation for
blind-spot warning systems. The system uses only 13% logic
resources and 95k bits of the FPGA’s block memory, and its
frame rate is over 30 frames per sec. Future blind-spot warning
systems may incorporate application-specific integrated
circuits to reduce costs.

REFERENCES
[1] Uvais Qidwai, “Fuzzy Blind-Spot Scanner for Automobiles” in IEEE

Symposium on Industrial Electronics and Applications, October 4-6, 2009,
pp. 758-763.

[2] Y. K. Wang and S. H. Chen, “A Robust Vehicle Detection Approach,” in
Proc. Int. IEEE Conf. Advanced Video and Signal-based Surveillance,
Sep. 15–16, 2005, pp. 117-122.

[3] Y. Zhu, D. Comaniciu, M. Pellkofer and T. Koehler, “Reliable Detection
of Overtaking Vehicles Using Robust Information Fusion”, IEEE Trans.
Intelligent Transportation Systems, vol. 7, no. 4, pp. 401-414, 2007.

[4] A.Techmer, “Real-time Motion Analysis for Monitoring the Rear and
Lateral Road”, in Proc. IEEE Intelligent Vehicles Symposium, Jun. 14–17,
2004, pp. 704 – 709.

[5] L. W. Tsai, J. W. Hsieh and K. C. Fan, “Vehicle detection using
normalized color and edge map,” in Proc. Int. IEEE Conf. Image
Processing, Sep. 11–14, 2005, vol.2, pp.588-601.

[6] K. She, G. Bebis, H. Gu and R. Miller, “Vehicle Tracking Using On-Line
Fusion of Color and Shape Features,” in Proc. 7th Int. IEEE Conf. on
Intelligent Transportation Systems, Oct. 3–6, 2004, pp. 731-736.

[7] P. H. Batavia, D. E. Pomerleau and C. E. Thorpe, “Overtaking Vehicle
Detection Using Implicit Optical Flow,” in Proc. IEEE Conf. on
Intelligent Transportation Systems, Nov. 9-12, 1997, pp. 729-734.

[8] M. Krips et al, “AdTM tracking for blind spot collision avoidance”, in
Proc. IEEE Intelligent Vehicles Symposium., Jun. 14–17, 2004, pp. 544 –
548.

[9] C.T. Chen and Y.S. Chen, “Real-time approaching vehicle detection in
blind-spot area”, in Proc. 12th Int. IEEE Conf. on Intelligent
Transportation Systems, Oct. 4–7, 2009, pp. 1–6.

[10] Sudhir Sharma, Wang Chen, “Using Model-Based Design to Accelerate
FPGA Development for Automotive Applications”, in 2009 SAE World
Congress, January 1-15,2009.

