Desirable characteristics of public quick charger

CHAdeMO Association
25th January, 2011

How to resolve trade-off problem of battery cost and driving range

Lessons and learns from EV in 1990's

Cost \$100,000
Price $\$ 50,000$
Driving Range 100~120km
Weight $1,550 \mathrm{~kg}$
Battery type NMH
Battery weight 450 kg

Bad news: Battery cost was extremely expensive then the vehicle cost was higher than the its price.

Good news: TEPCO employees were satisfied with 100 km driving range.

Compact vehicle is a good target for initial stage

Use public charger to reduce battery amount

Findings from 1990's public chargers

Public charging stations in California

Inductive

Conductive

Charging stations in San Francisco

5 km

- City of San Francisco is one of the most concentrated area of public chargers.
- Less than one charging station in one square km.
- It is difficult to find a charging station near the place where drive wants to park.

Charging station in Greater Tokyo area

 - In 1990's, there were only 6 inductive

50km

齿

Quick charger is suitable for public use

Cost is important for private and office use since number of equipments should be same of number of vehicles.

Charging speed should be fast enough.

Findings from experimental EV implementation to TEPCO branch office in 2007~2008

Before quick charger installation (October 2007)

Drive mileage in October 2007 was 203km.
Driver understood EV performance but they were reluctant to use it.

After quick charger installation (July 2008)

Drive mileage in July 2008 was drastically increase to 1472 km . Quick charger removes drivers range anxiety effectively.

Quick charger extracts battery performance

 SOC distribution when EV came back to the officeOctober 2007

Battery SOC were higher than 50\%

July 2008

Battery SOC were less than 50\%

- Drivers feel easy because they can recharge whenever they need.
- Drivers use quick charger only few times and use electricity in the battery.

Basic strategy to expand EV market

Compact EV and public quick charger

Current circumstance
100 km driving range means $\sim \$ 15,000$ battery cost.
How to minimize the on-board battery is key issue.

Strategy for the first step

1. Target on compact commuter vehicles in early stage of market penetration.
2. Deploy public quick chargers to remove drivers range anxiety.
Necessary number of quick chargers is small because drivers use normal charging usually.

Specifications of new electric vehicles

Name	Plug in Stella	TMHEV	Leaf
Maker	Subaru	Mitsubishi Motors	Nissan
Passengers	4	4	5
Weight [kg]	870	1,080	-
Driving range [km]	80	120	(160 in test mode)
Battery [kWh]	9.2	16	24
Charging Method	AC $1 \phi: 100 \sim 230 \mathrm{~V}$ DC: 400V 125A 5 min for 40 km 10 min for 60 km	AC $1 \phi: 100 \sim 230 \mathrm{~V}$ DC: 370V 125A 15 min for 60 km 30 min for 100 km	AC $1 \phi: 100 \sim 230 \mathrm{~V}$ DC: 400V 125A

Several charger makers have started production

Hasetec	Takaoka	Takasago	Nittetsu Elex	Kyuki	ABB
\$35,000	\$35,000	\$35,000	\$35,000	\$44,000	-

Installation cost is approximately $\mathbf{\$ 2 0 , 0 0 0}$.
5 makers had already started sales and more makers will join soon.
Real price is \$15,000 ~ \$25,000 in 2010.

How much kW is good for public charger?

How much kW is suitable for public quick charger?

- Public chargers are for commuter passenger vehicles.

Not for super EV which can drive 400 km in one charge.
Not for big truck and heavy bus which is more than 10t.

- Passenger Vehicles (1t)

Battery size is around 20 kW for 140 km driving range.
50 kW charger can supply 60 km driving electricity in 10 min .

- Truck and Bus (10t)

Battery size is more than 130 kWh for 100 km driving EV.
400 kW charger is necessary to recharge battery within 20 min .

- Super EV (Driving range is 400 km)

Battery size is more than 50 kWh .
200 kW charger is necessary to recharge battery in 15 min .

Cost/Benefit of charging infrastructure

Specification of developed quick charger

Specifications

-Type: Switching type constant current power supply

- Input: 3-phase 200V (200~430V)
- Output power: $50 \mathrm{~kW}(10 \sim 100 \mathrm{~kW})$
- Maximum DC output Voltage: 500V
- Output current: 125A (20~200A)

Target charging time 5 minutes for 40 km driving range 10 minutes for 60 km driving range Depend on battery performance

Price $\$ 20,000 \sim \$ 25,000$

Characteristics of CHAdeMO charger

What is CHAdeMO protocol?

<Problem>

- Optimal charging pattern depends on battery characteristics and condition.
- Standardization may disturb battery improvement.
<Solution>
- EV computer decides optimal charging current base on its battery condition.
- Charger supplies DC current following order from EV computer.

Charging sequence flowchart

Charger
START button pressed
Vehicle

Vehicle and charger interface circuits

Main DC circuit

Sequence control circuit

CAN communication bus
Reference GND and Isolation monitoring line

Definition of Control / Comm. Sequence \& Timing

Ex.) Charging preparation process

CHAdeMO proposing DC Connector

- Maximum current: 200A
- Getting feedback from field use, the design is improving.
- Detail dimension of interface geometry is open to public, then any maker can fabricate compatible connector.

Connector pin-layout and assignment

Connector surface

Pin No.	function / assignment	Pin diameter (mm)	Wire size $\left(\mathrm{mm}^{2}\right)$
1	Reference GND for insulation monitor	1.6	0.75
2	Control EV relay (1 of 2)	1.6	0.75
3	(not assigned)	1.6	-
4	Ready to charge control	1.6	0.75
5	Power (3upply) lifye-fegaidye	9.10	$\begin{aligned} & 150 A: 12,12,1 \\ & 200 A=53.5 \end{aligned}$
6	power (supply line-positive	9.0	$\begin{aligned} & 150 A: 42.4 \\ & 200 A: 53.5 \end{aligned}$
7	Proximity detection	1.6	0.75
8	Communication +	1.6	0.75
9	Communication -	1.6	0.75
10	Control EV relay (2 of 2)	1.6	0.75

Comparison with other proposal

DC off board charger vs. Motor drive inverter

DC off board charger vs. Motor drive inverter

Element	Objectives	QC	MDI
AC Filter	Protect distribution line from higher harmonics distortion.	0	\times
PFC	Conversion efficiency improvement.	O	\times
Isolation Transformer	Operator and battery protection.	O	\times
LC filter	Battery protection by getting rid of ripple from output current.	O	\times
Ground fault monitor	The user is protected from the electric shock.	O	Δ

DC Quick Charger
Circuit configuration

DC off board charger vs. Motor drive inverter DC Off board Charger

Motor Drive Inverter

Better Place Model (Battery Exchange)

Cost of battery exchange system is $\sim \$ 500,000$.
Battery inventory pushes up total cost.

Total cost of charging equipments

Based on million units of EV

Combo Connector

- Combo connector size is bigger than JARI proposed connector.

Especially, real size becomes much bigger based on same number of signal lines as JARI proposed connector.

- Combo connector is heavier, then difficult to handle.
- Single trouble of socket disables both AC and DC power supply.

Three candidates of AC connector in IEC standard

- There are three different AC connector designs in IEC standard.
- MENNEKES connecter is design to supply up to 44 kVA

SAE AC standard

MENNEKES

Italy proposal

Who will install quick chargers?

TEPCO branch office

84 quick chargers are installed.

310 EVs are already deployed.

It will be 100 by the end of FY2010. 210 EVs will be deployed in FY2010.

Kanagawa prefecture office

Operation started on
June 2008

Shin-Marunouchi Building

Operation started
on September 2008

Operation started on April 2009

Operation started on September 2009

AEON shopping mall

Operation started on
September 2008

Public parking lot

Operation started on
October 2008

Metropolitan highway parking area

Operation started on
October 2008

Tokyo University of Marine Science and Technology

Operation started on March 2009

Gas station

Operation started on
March 2009

Operation started on
July 2009

Mitsubishi Motors \＆Nissan Headquarter

Operation started on June 2009

Operation started on
August 2009

Quick charger location map

For public use
For private use

```
Greater Tokyo Area
```


Future business model of quick charger

Business model of quick chargers

Summary

- Home or working place

Normal electrical outlet of AC $100 \mathrm{~V} \sim \mathbf{2 3 0 V}$
Drivers have enough time for recharging.
Number of charging spots should be more than millions.
It should be easy and cheap infrastructure.

- Public place

DC quick charger
It relieves drivers psychological obstacle.
Mainly it is for emergency and sometime for range extender.
Number of DC charger is small since drivers don't use them often.
CHAdeMO DC charger is currently available safe and reliable design.

